51 research outputs found

    Fully Automatic Expression-Invariant Face Correspondence

    Full text link
    We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Get PDF
    International audienceThis paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches

    3D synthesis of man-made objects based on fine-grained parts

    No full text
    We present a novel approach for 3D shape synthesis from a collection of existing models. The main idea of our approach is to synthesize shapes by recombining fine-grained parts extracted from the existing models based purely on the objects’ geometry. Thus, unlike most previous works, a key advantage of our method is that it does not require a semantic segmentation, nor part correspondences between the shapes of the input set. Our method uses a template shape to guide the synthesis. After extracting a set of fine-grained segments from the input dataset, we compute the similarity among the segments in the collection and segments of the template using shape descriptors. Next, we use the similarity estimates to select, from the set of fine-grained segments, compatible replacements for each part of the template. By sampling different segments for each part of the template, and by using different templates, our method can synthesize many distinct shapes that have a variety of local fine details. Additionally, we maintain the plausibility of the objects by preserving the general structure of the template. We show with several experiments performed on different datasets that our algorithm can be used for synthesizing a wide variety of man-made objects

    AniMesh

    No full text

    Semantic part segmentation of single-view point cloud

    No full text

    Functionality representations and applications for shape analysis

    No full text
    A central goal of computer graphics is to provide tools for designing and simulating real or imagined artifacts. An understanding of functionality is important in enabling such modeling tools. Given that the majority of man-made artifacts are designed to serve a certain function, the functionality of objects is often reflected by their geometry, the way that they are organized in an environment, and their interaction with other objects or agents. Thus, in recent years, a variety of methods in shape analysis have been developed to extract functional information about objects and scenes from these different types of cues. In this report, we discuss recent developments that incorporate functionality aspects into the analysis of 3D shapes and scenes. We provide a summary of the state-of-the-art in this area, including a discussion of key ideas and an organized review of the relevant literature. More specifically, the report is structured around a general definition of functionality from which we derive criteria for classifying the body of prior work. This definition also facilitates a comparative view of methods for functionality analysis. We focus on studying the inference of functionality from a geometric perspective, and pose functionality analysis as a process involving both the geometry and interactions of a functional entity. In addition, we discuss a variety of applications that benefit from an analysis of functionality, and conclude the report with a discussion of current challenges and potential future works

    Data sampling in multi-view and multi-class scatterplots via set cover optimization

    No full text
    We present a method for data sampling in scatterplots by jointly optimizing point selection for different views or classes. Our method uses space-filling curves (Z-order curves) that partition a point set into subsets that, when covered each by one sample, provide a sampling or coreset with good approximation guarantees in relation to the original point set. For scatterplot matrices with multiple views, different views provide different space-filling curves, leading to different partitions of the given point set. For multi-class scatterplots, the focus on either per-class distribution or global distribution provides two different partitions of the given point set that need to be considered in the selection of the coreset. For both cases, we convert the coreset selection problem into an Exact Cover Problem (ECP), and demonstrate with quantitative and qualitative evaluations that an approximate solution that solves the ECP efficiently is able to provide high-quality samplings
    • …
    corecore